Chen / Chau

Online Capacity Provisioning for Energy-Efficient Datacenters

Springer

ISBN 978-3-031-11551-6

Standardpreis


53,49 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

Fachbuch

Buch. Softcover

2023

1 s/w-Abbildung, 11 Farbabbildungen, Bibliographien.

In englischer Sprache

Umfang: xii, 79 S.

Format (B x L): 16,8 x 24 cm

Gewicht: 175

Verlag: Springer

ISBN: 978-3-031-11551-6

Weiterführende bibliografische Daten

Produktbeschreibung

This book addresses the urgent issue of massive and inefficient energy consumption by data centers, which have become the largest co-located computing systems in the world and process trillions of megabytes of data every second. Dynamic provisioning algorithms have the potential to be the most viable and convenient of approaches to reducing data center energy consumption by turning off unnecessary servers, but they incur additional costs from being unable to properly predict future workload demands that have only recently been mitigated by advances in machine-learned predictions.
This book explores whether it is possible to design effective online dynamic provisioning algorithms that require zero future workload information while still achieving close-to-optimal performance. It also examines whether characterizing the benefits of utilizing the future workload information can then improve the design of online algorithms with predictions in dynamic provisioning. The book specifically develops online dynamic provisioning algorithms with and without the available future workload information. Readers will discover the elegant structure of the online dynamic provisioning problem in a way that reveals the optimal solution through divide-and-conquer tactics. The book teaches readers to exploit this insight by showing the design of two online competitive algorithms with competitive ratios characterized by the normalized size of a look-ahead window in which exact workload prediction is available.

Autorinnen und Autoren

Kundeninformationen

Examines ways to improve the design of online algorithms with predictions in dynamic provisioning Describes best practices for implementing online dynamic provisioning algorithms for data centers Explores the effective use of future workload prediction data in online dynamic provisioning algorithms

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...