Effective Statistical Learning Methods for Actuaries II
Tree-Based Methods and Extensions
Springer Nature Switzerland
ISBN 978-3-030-57556-4
Standardpreis
Bibliografische Daten
eBook. PDF
2020
X, 228 p. 68 illus., 6 illus. in color..
In englischer Sprache
Umfang: 228 S.
Verlag: Springer Nature Switzerland
ISBN: 978-3-030-57556-4
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Springer Actuarial Springer Actuarial Lecture Notes
Produktbeschreibung
This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities.
The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, masters students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful.
This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance.
Autorinnen und Autoren
Produktsicherheit
Derzeit sind keine Informationen zur Produktsicherheit verfügbar. Wir arbeiten daran, diese Informationen in naher Zukunft für Sie bereitzustellen.