Effective Statistical Learning Methods for Actuaries III
Neural Networks and Extensions
Springer International Publishing
ISBN 978-3-030-25827-6
Standardpreis
Bibliografische Daten
eBook. PDF
2019
XIII, 250 p. 78 illus., 75 illus. in color..
In englischer Sprache
Umfang: 250 S.
Verlag: Springer International Publishing
ISBN: 978-3-030-25827-6
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Springer Actuarial Springer Actuarial Lecture Notes
Produktbeschreibung
Artificial intelligence and neural networks offer a powerful alternative to statistical methods for analyzing data. This book reviews some of the most recent developments in neural networks, with a focus on applications in actuarial sciences and finance.
The third volume of the trilogy simultaneously introduces the relevant tools for developing and analyzing neural networks, in a style that is mathematically rigorous and yet accessible. The authors proceed by successive generalizations, requiring of the reader only a basic knowledge of statistics.
Various topics are covered from feed-forward networks to deep learning, such as Bayesian learning, boosting methods and Long Short Term Memory models. All methods are applied to claims, mortality or time-series forecasting.
This book is written for masters students in the actuarial sciences and for actuaries wishing to update their skills in machine learning.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com