Jiang / Cui / Zhang

Distributed Machine Learning and Gradient Optimization

Springer Nature Singapore

ISBN 9789811634208

Standardpreis


149,79 €

sofort lieferbar!

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

Bibliografische Daten

eBook. PDF

2022

XI, 169 p. 1 illus..

In englischer Sprache

Umfang: 169 S.

Verlag: Springer Nature Singapore

ISBN: 9789811634208

Weiterführende bibliografische Daten

Das Werk ist Teil der Reihe: Big Data Management

Produktbeschreibung

This book presents the state of the art in distributed machine learning algorithms that are based on gradient optimization methods. In the big data era, large-scale datasets pose enormous challenges for the existing machine learning systems. As such, implementing machine learning algorithms in a distributed environment has become a key technology, and recent research has shown gradient-based iterative optimization to be an effective solution. Focusing on methods that can speed up large-scale gradient optimization through both algorithm optimizations and careful system implementations, the book introduces three essential techniques in designing a gradient optimization algorithm to train a distributed machine learning model: parallel strategy, data compression and synchronization protocol.

Written in a tutorial style, it covers a range of topics, from fundamental knowledge to a number of carefully designed algorithms and systems of distributed machine learning. It will appeal toa broad audience in the field of machine learning, artificial intelligence, big data and database management.

Autorinnen und Autoren

Produktsicherheit

Hersteller

Libri GmbH

Europaallee 1
36244 Bad Hersfeld, DE

gpsr@libri.de

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...