Machine Learning Methods for Reverse Engineering of Defective Structured Surfaces
Springer Gabler
ISBN 978-3-658-29017-7
Standardpreis
Bibliografische Daten
eBook. PDF. Weiches DRM (Wasserzeichen)
2020
XV, 161 p. 56 illus..
In englischer Sprache
Umfang: 161 S.
Verlag: Springer Gabler
ISBN: 978-3-658-29017-7
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Schriftenreihe der Institute für Systemdynamik (ISD) und optische Systeme (IOS)
Produktbeschreibung
Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures. The proposed methods aim to improve the reconstruction quality while further automating the process. The contributions demonstrate that machine learning can be a viable part of the CAD reverse engineering pipeline.
- Machine Learning Methods for Parametrization in Curve and Surface Approximation
- Classification of Geometric Primitives in Point Clouds
- Image Inpainting for High-resolution Textures Using CNN Texture Synthesis
- Lecturers and students in the field of machine learning, geometric modeling and information theory
- Practitioners in the field of machine learning, surface reconstruction and CAD
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

