Hybrid System Identification
Theory and Algorithms for Learning Switching Models
Springer International Publishing
ISBN 978-3-030-00193-3
Standardpreis
Bibliografische Daten
eBook. PDF. Weiches DRM (Wasserzeichen)
2018
XXI, 253 p. 35 illus., 34 illus. in color..
In englischer Sprache
Umfang: 253 S.
Verlag: Springer International Publishing
ISBN: 978-3-030-00193-3
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Lecture Notes in Control and Information Sciences
Produktbeschreibung
¿Hybrid System Identification helps readers to build mathematical models of dynamical systems switching between different operating modes, from their experimental observations. It provides an overview of the interaction between system identification, machine learning and pattern recognition fields in explaining and analysing hybrid system identification. It emphasises the optimization and computational complexity issues that lie at the core of the problems considered and sets them aside from standard system identification problems. The book presents practical methods that leverage this complexity, as well as a broad view of state-of-the-art machine learning methods.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Springer Nature Customer Service Center GmbH
ProductSafety@springernature.com
BÜCHER VERSANDKOSTENFREI INNERHALB DEUTSCHLANDS

