Deep Learning for Time-series Classification Enhanced by Transfer Learning Based on Sensor Modality Discrimination
Logos Verlag Berlin GmbH
ISBN 978-3-8325-5396-8
Standardpreis
Bibliografische Daten
Fachbuch
Buch. Softcover
2021
In englischer Sprache
Umfang: 158 S.
Format (B x L): 17 x 24 cm
Verlag: Logos Verlag Berlin GmbH
ISBN: 978-3-8325-5396-8
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Human Data Understanding - Sensors, Models, Knowledge; 2
Produktbeschreibung
Feature extraction is nowadays mainly divided into two categories: feature engineering and feature extraction based on deep learning. The thesis firstly attempts to verify whether deep feature learning convincingly outperforms feature engineering like for image classification. Transfer learning refers to the transfer of knowledge from a source to a target domain to improve classification performances on the latter. It has shown to consistently enhance deep feature learning for image classification, but remains under investigation for time-series. The thesis secondly proposes a new deep transfer learning approach transferring features learned by sensor modality classification on a source domain containing diverse types of time-series data.
Experiments carried out for various Ubicomp applications (human activity, emotion and pain recognition) show that deep feature learning is not always the best option for time-series feature extraction, and that the proposed deep transfer learning approach can consistently enhance deep feature learning.
Autorinnen und Autoren
Produktsicherheit
Derzeit sind keine Informationen zur Produktsicherheit verfügbar. Wir arbeiten daran, diese Informationen in naher Zukunft für Sie bereitzustellen.