Riezler / Hagmann

Validity, Reliability, and Significance

Empirical Methods for NLP and Data Science

2., Second Edition 2024

Springer

ISBN 978-3-031-57064-3

Standardpreis


42,79 €

lieferbar ca. 10 Tage als Sonderdruck ohne Rückgaberecht

Preisangaben inkl. MwSt. Abhängig von der Lieferadresse kann die MwSt. an der Kasse variieren. Weitere Informationen

auch verfügbar als eBook (PDF) für 42,79 €

Bibliografische Daten

Fachbuch

Buch. Hardcover

2., Second Edition 2024. 2024

9 s/w-Abbildungen, 61 Farbabbildungen, Bibliographien.

In englischer Sprache

Umfang: xvii, 168 S.

Format (B x L): 16,8 x 24 cm

Verlag: Springer

ISBN: 978-3-031-57064-3

Weiterführende bibliografische Daten

auch verfügbar als eBook (PDF) für 42,79 €

Produktbeschreibung

This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.

Autorinnen und Autoren

Kundeninformationen

Includes problems of validity, reliability, and significance and provides solutions based on statistical methodology introduces empirical methods for machine learning with a focus on applications in NLP and data science Presents generalized additive models and linear mixed models and utilizes R and Python to replicate

Produktsicherheit

Hersteller

Springer Nature Customer Service Center GmbH

ProductSafety@springernature.com

Topseller & Empfehlungen für Sie

Ihre zuletzt angesehenen Produkte

Rezensionen

Dieses Set enthält folgende Produkte:
    Auch in folgendem Set erhältlich:

    • nach oben

      Ihre Daten werden geladen ...