Large-scale Graph Analysis: System, Algorithm and Optimization
Springer Nature Singapore
ISBN 9789811539282
Standardpreis
Bibliografische Daten
eBook. PDF
2020
XIII, 146 p. 78 illus., 30 illus. in color..
In englischer Sprache
Umfang: 146 S.
Verlag: Springer Nature Singapore
ISBN: 9789811539282
Weiterführende bibliografische Daten
Das Werk ist Teil der Reihe: Big Data Management
Produktbeschreibung
This book introduces readers to a workload-aware methodology for large-scale graph algorithm optimization in graph-computing systems, and proposes several optimization techniques that can enable these systems to handle advanced graph algorithms efficiently. More concretely, it proposes a workload-aware cost model to guide the development of high-performance algorithms. On the basis of the cost model, the book subsequently presents a system-level optimization resulting in a partition-aware graph-computing engine, PAGE. In addition, it presents three efficient and scalable advanced graph algorithms - the subgraph enumeration, cohesive subgraph detection, and graph extraction algorithms.
This book offers a valuable reference guide for junior researchers, covering the latest advances in large-scale graph analysis; and for senior researchers, sharing state-of-the-art solutions based on advanced graph algorithms. In addition, all readers will find a workload-aware methodology fordesigning efficient large-scale graph algorithms.
Autorinnen und Autoren
Produktsicherheit
Hersteller
Libri GmbH
Europaallee 1
36244 Bad Hersfeld, DE
gpsr@libri.de